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Abstract
In many real tasks, we care about how to make
decisions rather than mere predictions on an event,
e.g. how to increase the revenue next month in-
stead of merely knowing it will drop. The key is to
identify the causal effects on the desired event. It
is achievable with do-calculus if the causal struc-
ture is known; however, in many real tasks it is
not easy to infer the whole causal structure with
the observational data. Introducing external inter-
ventions is needed to achieve it. In this paper, we
study the situation where only the response vari-
able is observable under intervention. We propose
a novel approach which is able to cost-effectively
identify the causal effects, by an active strategy
introducing limited interventions, and thus guide
decision-making. Theoretical analysis and em-
pirical studies validate the effectiveness of the
proposed approach.

1. Introduction
Making accurate predictions on an event has been exten-
sively studied, and achieved great success in various appli-
cations. In many real tasks, however, it is more important
to know how to make decisions rather than mere predic-
tions. For example, instead of knowing that there will be a
drop in sales, sellers care more about how to increase sales;
and doctors care about how to rehabilitate patients rather
than merely predicting the disease. A reasonable solution
for such problems is to make causal effect identification,
i.e. identify the causal effect of each variable on the event.
Then one can know how to make the optimal decision by an
intervention on a specific variable with a specific value.
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Pearl contributed a series of seminal works (Pearl, 2009)
in identifying causal effects. Given the knowledge of the
causal graph, do-calculus is an excellent tool to make it.
However, the causal graph is usually not available in ad-
vance, and thus it is crucial to discover the causal structure.

There are many classical off-the-shelf causal discovery meth-
ods (Spirtes et al., 2000; Chickering, 2002), which typically
obtain a Markov equivalence class based on the observa-
tional data. Unfortunately, there often remains unknown
causal relations in the Markov equivalence class, leading
to some unidentified causal effects. A primary solution is
to discover the additional causal relations from the inter-
ventional data generated by actively intervening on some
variables. Some related works are proposed to discover the
whole structure with the target of reducing the total interven-
tion times or cost (He & Geng, 2008; Hauser & Bühlmann,
2014; Kocaoglu et al., 2017). When all variables under in-
terventions are observable, these methods work quite well.

In many real tasks, however, when performing interventions,
it is expensive or even hard to observe all variables. For ex-
ample, after receiving treatments, the patients are not willing
to undergo a full medical examination once again. Usually,
doctors merely get the feedback of their illness conditions.
In many cases, only the event we want to change, i.e., the
response variable, is easily accessible when we impose
an intervention. In this paper, to deal with such problems,
we propose a novel approach ACI for Active Causal ef-
fect Identification, i.e., identify causal effects when only
response variable is observable under active intervention.

Due to the limitation of observations, it is no longer easy
to identify the causal structure by methods of He & Geng
(2008) and Hauser & Bühlmann (2014). Specifically, these
methods identify causal relations by just whether the distri-
bution of some variable changes under interventions on
others. In their setting, such consideration is sufficient
for the causal discovery process. But when only the post-
interventional information of response variable is available,
they may fail to discover the causal structure. For example,
the structures in Fig. 1(a) and Fig. 1(b) cannot be distin-
guished because no matter which variables we intervene on,
the distribution of Y will change. We make a progress on
how to use interventional data. To the best of our knowledge,
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Figure 1. When only Y is observable, no matter whether structure
(a) or (b) is true and which variable is intervened on, the distribu-
tion of Y will change under intervention. Hence it is not sufficient
to differentiate them by observing whether Y changes. Besides,
the causal effects of X on Y in structure (b) and (c) are equivalent.

we are the first one to exploit how the distribution changes,
which can identify the indistinguishable case before.

Moreover, discovering the whole causal structure is no
longer always attainable in our setting. Nevertheless, we no-
tice that its discovery is not necessary for causal effect iden-
tification. Therefore, we identify ancestor causal structure,
whose discovery is necessary and sufficient for identifying
causal effect of each variable on the response variable. By
exploiting the intrinsic distribution of the response variable,
with actively applied interventions, the ancestor causal struc-
ture can be effectively identified with fewer interventions.

In summary, our contributions are twofold:

(1) Make things happen. Identify causal effects when only
response variable is observable. We exploit the in-
terventional distribution of the response variable and
prove the identifiability of causal effects;

(2) Make things better. Reduce the number of interven-
tions to make causal effect identification by an active
intervention strategy. Empirically and theoretically, we
show our strategy is effective and reasonable.

The reminder of paper is organized as follows. Section 2
reviews some related works. A brief preliminary is given
in Section 3. Section 4 describes the proposed method ACI.
Section 5 provides the theoretical guarantee for causal effect
identifiability and presents an intervention cost analysis to
make causal effect identification. Section 6 reports experi-
mental results. Finally, we conclude our paper in Section 7.

2. Related Works
In Pearl’s causality framework, there are lots of works to-
wards identifying causal effects. Many related criteria have
been established (Tian & Pearl, 2002; Shpitser & Pearl,
2006; Huang & Valtorta, 2006; Perkovic et al., 2015; Jaber
et al., 2019; Lee et al., 2019). For example, Perkovic et al.
(2015) provided necessary and sufficient graphical criteria
for causal effect identification by covariate adjustment. And
Jaber et al. (2019) proposed a complete result for causal ef-
fect identification under Markov equivalence class. They all

provide solid results. But the causal graph is often unknown,
or the partial causal graph we have, for instance an essential
graph, is not enough to guarantee causal effect identification,
so that we need discover some additional causal relations.

Identifying causal relations from data has been widely stud-
ied. Some are towards obtaining the essential graph (Spirtes
et al., 2000; Chickering, 2002; Huang et al., 2018). Also,
there are lots of works discovering causal structure based on
additional assumptions (Shimizu et al., 2006; Hoyer et al.,
2008; Zhang & Hyvärinen, 2009; Peters et al., 2011; 2014;
Zhang et al., 2017; 2018; Cai et al., 2018). But in some
conditions, the assumptions are not satisfied. To pursue
a general framework, many works introduce interventions.
One line is causal discovery based on observational data and
existing interventional data (Cooper & Yoo, 1999; Hauser &
Bühlmann, 2012; Triantafillou & Tsamardinos, 2015; Peters
et al., 2016; Meinshausen et al., 2016; Wang et al., 2017;
Kocaoglu et al., 2019). Another line enables active interven-
tions (He & Geng, 2008; Hyttinen et al., 2013; Hauser &
Bühlmann, 2014; Kocaoglu et al., 2017). These works aim
to identify the whole causal structure and conduct strategies
to reduce the intervention times. They mainly discover the
causal relations by observing whether distribution of some
variable changes under an intervention on others. It is suf-
ficient for the setting that observes the post-interventional
information of all the variables. However, when the full
observations are not available, the methods above may fail.

3. Preliminary
Let G = (V,E) be a graph. V contains features
X1, X2, · · · , Xp and the response variable Y . A partially
directed graph contains both directed and undirected edges.
After removing all arrowheads, we obtain the skeleton. Vi is
a parent/child/sibling of Vj if Vi → Vj /Vi ← Vj/Vi − Vj .
If there is a directed path from Vi to Vj , then Vi (Vj) is
an ancestor (descendant) of Vj (Vi). We denote the par-
ents/ancestors/siblings set of Vi by Pai/Anci/Sibi. The set
of undirected edges of Vi is denoted by ESibi .

A (partial) causal graph is a (partially) directed acyclic
graph, which is (PDAG) DAG for short. If two DAGs share
the same conditional independence, they are Markov equiva-
lent. The Markov equivalence class (MEC) is a set of DAGs
in which each graph is Markov equivalent to others. An
essential graph is a partially directed acyclic graph, and the
edge is Vi → Vj if and only if in each DAG of MEC the
edge is Vi → Vj . A partially directed graph is a chain graph
if there is no partial cycle, which is a partially directed path
starting and ending in a same node (Lauritzen & Richardson,
2002). After deleting the directed edges in a chain graph, we
divide it into a few chain components whose variables are
connected in an undirected graph. Meek rules are criteria to
orient some undirected edges in a partial causal graph. We
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guide readers to Meek (1995a;b) for more details.

In this paper, capital and lower-case letters denote random
variables and values respectively. In Pearl’s do-calculus
framework (Pearl, 2009), do(Xi = xi) represents interven-
ing on variable Xi with value xi. The causal effect of Xi on
Y is denoted by P (Y |do(Xi)). We would claim Xi has a
causal effect on Y if Xi is an ancestor of Y . In this circum-
stance, intervening on X will take a distribution change to
the response variable Y , i.e. P (Y |do(Xi = xi)) 6= P (Y ).
Otherwise, we say Xi has no causal effect on Y .

Next, we give a brief introduction to back-door criterion.
It is a tool for inferring the causal effect of X on Y with
observational data given the knowledge of causal graph.

A set of variables Z is called a back-door admissible set for
(Xi, Y ) in a DAG G if no variable in Z is a descendant of
Xi and Z blocks every path betweenXi and Y that contains
an arrow into Xi. By definition, Pai is one of the back-door
admissible sets for (Xi, Y ). With a back-door admissible
set Z for (Xi, Y ), we have

P
(
Y |do(Xi = xi)

)
=

∫
Z

P (Z)P (Y |Xi = xi,Z) dZ.

(1)

This equation is across our paper. In general, we use the data
of Y under intervention on Xi to infer which variable sets
are back-door admissible sets for (Xi, Y ), which implies
that the direction of the edges between these variables and
Xi are into Xi. Hence we can obtain some causal structure
information from the post-interventional data of only Y .

4. The Proposed Approach
In this paper, Y denotes the response variable and
X1, X2, · · · , Xp denote p variables. Faithfulness and no
latent variables are assumed. We focus on discovering the
causal structure for causal effect identification by observa-
tional data of all the variables as well as active experiments,
in which we take singleton hard1 interventions on variable
from X1, X2, · · · , Xp, but only the response variable can
be collected. By the post-interventional data of Y , our ap-
proach orients some undirected edges. We repeat the process
until identifying the causal effect of each variable on Y .

Now, we first give a definition about minimal parental back-
door admissible set (MPS), followed by an important as-
sumption interventional-faithfulness across our paper for
the causal discovery process with interventional data.

Definition 1 (Minimal Parental Back-door Admissible Set
(MPS)). M is called a minimal parental back-door admis-

1Hard intervention means we intervene in a specific value. The
alternative is soft intervention, which affects the causal mechanism
generating the variable (Eberhardt, 2007; He & Geng, 2016).

sible set for (Xi, Y ) in a DAG G if (1). all variables in M
are parents of Xi, (2). M is a back-door admissible set for
(Xi, Y ), (3). no variable in M is conditional independent
of Y given Xi and the other variables in M.

Assumption 1 (Interventional-faithfulness). For two
Markov equivalent DAGs with the same observational dis-
tribution, if Xi ∈ AncY and minimal parental back-door
admissible sets for (Xi, Y ) are different in the two DAGs,
then P

(
Y |do(Xi = x)

)
are different in the two DAGs.

Similar to faithfulness assumption, which avoids the sit-
uation that there is an edge X → Y in the graph while
X and Y happen to be independent in the observational
distribution, the interventional-faithfulness assumption is
to avoid the situation that the causal effects of X on
Y in two causal graphs with totally different back-door
admissible sets happen to be equal. For example, the
causal effect of X on Y is P (Y |X = x0) in Fig. 1(a),
while it is

∫
z
P (Y |z,X = x0)P (z) dz in Fig. 1(c). In

general, they are not equivalent. Assumption 1 assumes
they cannot happen to be equal. It is noteworthy that
different back-door admissible sets may induce the same
causal effect. In Fig. 1(b), it is

∫
z,t
P (z, t)P (Y |z, t,X =

x0) dz dt =
∫
z
P (z)P (Y |z,X = x0) dz, which equals to

that in Fig. 1(c). In such a situation, we call the back-door
admissible sets are not totally different. In the assumption,
MPS is introduced to help distinguish whether two back-
door admissible sets are totally different, i.e., whether the
causal effects in two causal graphs are not equivalent in
general. We provide an analysis about the reasonableness
of interventional-faithfulness assumption in Appendix B.

Our approach contains graph decomposition, structure in-
ference, and intervention variable selection. Graph decom-
position is to simplify the graph to be oriented. Structure
inference is to infer the causal structure with the interven-
tional data of response variable. And intervention variable
selection aims to select the variable to be manipulated.

4.1. Graph Decomposition

The observational data contains some causal information
between the variables. We thus obtain the essential graph
by observational data. There exist some classical causal dis-
covery approaches to make it, such as PC algorithm (Spirtes
et al., 2000) and GES algorithm (Chickering, 2002). Here
both of them are applicable. Based on the essential graph,
we design an adaptive strategy2 to do active experiments
to make causal effect identification with fewer number of
interventions. Considering the high cost of intervention, we
first introduce the definition of ancestor causal structure
and prove its discovery is the necessary and sufficient condi-

2An adaptive strategy is an intervention strategy in which every
intervention variable depends on the result of interventions before.
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tion for causal effect identification. Then we present some
theoretical guarantees for the graph decomposition part.

Definition 2 (Ancestor Edges and Ancestor Causal Struc-
ture). In a causal graph G, ancestor edges are all the edges
including at least one variable in AncY . We denote them
by EA. Ancestor causal structure is the subgraph G[EA]
induced by EA.

Theorem 1. The causal effect of each variable on the re-
sponse variable Y is identifiable if and only if all the ances-
tor edges (ancestor causal structure) are identified.

The proof is given in Appendix D.1. It implies if we know
some undirected edges are not ancestor edges in the process
of causal discovery, there is no need for us to orient them
because they do not contribute to causal effect identification.

Proposition 1. If some undirected edges in one chain com-
ponent are oriented, after applying Meek rules, the undi-
rected edges in other chain components remain.

This follows Theorem 4 and 5 of He & Geng (2008).

Proposition 2. In a chain component C of chain graph G,
if the response variable Y 6∈ C and there does not exist a
directed path from v to Y for any variable v ∈ C in G, then
there is no directed path from C to Y in the causal graph.

The proof is in Appendix D.1. In our method, graph decom-
position contains two parts. For a chain graph G, which is
an essential graph or the graph inferred after last interven-
tion, we divide it into several chain components, and then
intervene and identify causal relations separately. The rea-
son is the causal relation inference in each chain component
is independent as implied in Proposition 1. Moreover, we ig-
nore the chain components without directed paths to Y in G
because the undirected edges here cannot be ancestor edges
as indicated in Proposition 2, identifying them is unneces-
sary for causal effect identification according to Theorem 1.
Next, we will discuss structure inference and intervention
variable selection in the level of chain component.

4.2. Structure Inference

Here, we focus on how to identify undirected edges in chain
component C of chain graph G with the post-interventional
data of Y . We assume Xi is the selected intervention vari-
able. The criterion to select it is presented in the next part.
We first introduce a definition.

Definition 3 (Possible Causal Structure (PCS) of Xi). Let
G be a chain graph, a possible causal structure of Xi is an
acyclic graph such that ESibi is oriented from G, as well as
it shares the common v-structures with G.3 Sometimes we
omit “of Xi” and call PCS for short.

3Possible causal structure of Xi is not necessarily a directed
graph because there may be undirected edges out of ESibi .

Algorithm 1 Get the minimal parental back-door admissible
set for (Xi, Y )

input: Intervention variable Xi, causal structure or PCS G
1: Initialize M = {Pai in G}
2: if there are undirected edges in G then
3: Update G by orienting all undirected edges on the

premise that generates no new v-structures or cycles
4: end if
5: for v in M do
6: if v ⊥ Y |

{
Xi,M\{v}

}
in G then

7: M = M\{v}
8: end if
9: end for

output: M.

All undirected edges of Xi in ESibi have two possible di-
rections. We list each PCS Gj of Xi, where Gj is obtained
from an orientation on ESibi , and j is the index for a PCS.
Our main idea here is to find the PCS in which the estimated
causal effect is consistent to interventional data under real
intervention. Then identify some edges in ESibi .

It is noteworthy that different PCSs possibly induce the
same causal effect of Xi on Y . Hence we divide all PCSs
into several classes. The causal effects in the structures from
one class are the same. By the interventional data of Y , we
can select the class in which the causal effect estimation is
consistent to real intervention. Then we update the common
edges of Xi in this class to G. The other undirected edges
still remain. To identify which possible causal structures are
bracketed, we consider Definition 1. We reveal in Proposi-
tion 3 that the causal effects of Xi on Y are the same for Gj

andGk if and only if the MPSs for (Xi, Y ) in these PCSs of
Xi are the same. By the definition, we propose Algorithm 1
to obtain MPS Mj for (Xi, Y ) in each PCS Gj .

Proposition 3. LetGj andGk be two possible causal struc-
tures of Xi. PGj

(
Y |do(Xi = xi)

)
= PGk

(
Y |do(Xi =

xi)
)

holds if and only if Mj = Mk, where
PGj

(
Y |do(Xi = xi)

)
and Mj denote the causal effect of

Xi = xi on Y and the MPS for (Xi, Y ) in Gj , respectively.

The necessity follows from back-door criterion and d-
separation directly. The adequacy is from interventional-
faithfulness assumption. Let P̂Gj

(
Y |do(Xi = xi)

)
and P̂

(
Y |do(Xi = xi)

)
denote the estimated causal

effect in PCS Gj and that under real intervention
respectively. Disc(P,Q) is the distribution discrep-
ancy between P and Q. If there are m interven-
tion samples

(
(do(Xi = xi1), Y1

)
, · · · ,

(
do(Xi =



Cost-effectively Identifying Causal Effects When Only Response Variable is Observable

Algorithm 2 Update the Graph
input: Intervention variable Xi, chain graph G;

1: Obtain Mj for every possible causal structure Gj by
Algorithm 1

2: Find G? by (2) and get its minimal parental back-door
admissible set M∗

3: Initialize G = ∅
4: for each Gj do
5: if Mj equals to M? then
6: G = G

⋃
{Gj}

7: end if
8: end for
9: if the size of G is 1 then

10: Orient G according to edges of Xi in G
11: else
12: Orient G according to the common edges of Xi in
G

13: end if
output: Updated graph G.

xis), Ys
)
, · · · ,

(
do(Xi = xim), Ym)

)
, we take the PCS by

G? = argmin
Gj

m∑
s=1

Disc
(
P̂Gj

(
Y |do(Xi = xis)

)
,

P̂
(
Y |do(Xi = xis)

))
(2)

and get the corresponding MPS M?. All PCSs with MPS
M? are selected and their common edges of Xi are updated
to the chain graph G. The process is shown in Algorithm 2.

Any distance measure of distribution can be used here. In
our experiments, we just take the difference of expectations
as the measure for the convenience of calculation. In this
condition, (2) is G? = argminGj

∑m
s=1

∣∣ÊGj

(
Y |do(Xi =

xis)
)
− Ys

∣∣. The calculation of causal effects is prone to
suffer the curse of dimensionality. We refer to Monte Carlo
Method to estimate it avoiding high-dimensional estimation.
The details are given in Appendix C.

4.3. Intervention Variable Selection

In our criterion to select the intervention variable, we con-
sider the two following aspects.

(1) Each intervention must reveal some information about
ancestor edges considering the high cost of interven-
tion. The selected variable should thus guarantee iden-
tifying some undirected ancestor edges by our method
to infer the structure with the interventional data of Y
no matter what the potential causal structure is;

Algorithm 3 ACI (Active Causal Effect Identification)
input: Chain graph G;

1: repeat
2: C′ = {all the chain components of G}
3: C = {A|A ∈ C′,∃v ∈ A, s.t. v → · · · → Y }

// Delete the chain components without
directed paths to Y

4: if C is not empty then
5: Choose C ∈ C and select an intervention vari-

able X according to our selection criterion in Section
3.3

6: Orient some edges according to Algorithm 2
and obtain an updated graph G

7: G = Meek(G) // Applying Meek rules
8: end if
9: until C = ∅

output: The ancestor causal structure G[EA].

(2) Identify more undirected edges by this intervention on
the basis of achieving the first goal.

The main challenge here is to achieve the first goal. We
present our strategy to determine the intervention variable
selection set in Fig. 2. We denote the variable set in chain
component C by AncY [C̈] in which each variable has a
directed path to Y outside C in chain graph G, and its
size is |AncY [C̈]|. The selected set is marked in the blue
box. The idea behind it is to intervene on a variable which
convinces us that it has at least one undirected ancestor
edge. At the same time, the different directions of this edge
will lead to distinct MPSs such that different causal effects,
which guarantees we can identify it by the data of Y under
intervention. All variables in this selection set meet the first
goal. A theoretical guarantee is given in the next section.

We notice that it is possible to identify all undirected edges
of the intervened variable in one experiment by exploiting
the post-interventional distribution of Y in our approach.
Therefore, to pursue the second goal, we greedily select
the variable with the maximum undirected edges from the
intervention variable selection set to intervene.

Combining the above points, we keep intervening and ori-
enting some undirected edges until identifying all ancestor
edges. The complete algorithm ACI is as in Algorithm 3.
For the variables in the ancestor causal structure, their causal
effects on Y are determined by back-door criterion, while
for others, it is proved that they have no causal effects on Y .

5. Theoretical Guarantee
In this section, we first provide the theoretical guarantee
for causal effect identifiability. Then, analyses about the
intervention cost to make causal effect identification follow.
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Figure 2. The decision tree to determine the selection set.

5.1. Causal Effect Identifiability

In this section, we prove each intervention can orient at least
one undirected ancestor edge in Theorem 2. Then, combin-
ing with Theorem 1, the identifiability of ancestor causal
structure and the causal effect of each variable on response
variable are directly concluded in Corollary 1. A supporting
lemma is given at first, with the proof in Appendix D.2.

Lemma 1. Under Assumption 1 and our intervention vari-
able selection strategy, if X is intervened in chain compo-
nent C, Y 6∈ C, undirected edges exist between AncY [C̈],
then all the undirected edges betweenX and the “next” vari-
able located in the shortest undirected pathP fromX to any
variable Z ∈ AncY [C̈] can be identified by the intervention,
the “next” variable is the one adjacent to X in P .

Theorem 2. Under Assumption 1 and our intervention vari-
able selection strategy, each intervention can orient at least
one undirected ancestor edge.

Proof. For a chain graph G to be oriented, there are three
possible conditions. 1. Y ∈ C; 2. Y 6∈ C and no undirected
edges between AncY [C̈]; 3. others. Denote the intervention
variable by Xi. In condition 1, the undirected edge Xi − Y
can be identified by whether Y changes under intervention.
In condition 3, since the intervention variable has at least one
directed path to Y , its undirected edges are ancestor edges.
Lemma 1 indicates that some of them can be identified. In
condition 2, if there is only one undirected path from Xi

to AncY [C̈], the edge between them can be identified as
condition 1. Otherwise, the edge between Xi and its sibling
which belongs to AncY [C̈] is identifiable as condition 3.

Corollary 1. The ancestor causal structure and the causal
effect of each variable on Y are identifiable by up to p
interventions when there are p+1 variablesX1, · · · , Xp, Y .

If there are some ancestor edges unidentified, we select
the intervention variable and infer the structure with the
interventional data until discovering them all. Hence Corol-
lary 1 holds. Moreover, Lemma 1 implies if the manipulated
variable has m different “next” variables in all the shortest
undirected paths to other variables in AncY [C̈], at least m
edges can be identified. This observation guides us to inter-
vene on the variable with maximum siblings, since it may

have more different “next” variables and thus identify more
undirected edges. That is exactly what we do in intervention
variable selection criterion to pursue the second goal.

5.2. Intervention Cost Analysis

In this part, we analyze the number of interventions to make
causal effect identification in running our algorithm, which
is the cost we hope to reduce. According to Corollary 1, p
is an upper bound for the intervention cost. For example, if
the causal structure is X1 → · · · → Xp → Y , the cost is p.
Although it is high in the worst case, our method can reduce
the cost in common situations. We analyze two common
skeletons. One is random line skeleton. The other is random
complete skeleton. The results are in the following two
propositions, with detailed proofs in Appendix D.3.
Proposition 4. For a line skeleton with p+1 ≥ 4 variables
X1, · · · , Xp, Y , if all the causal relations and positions
of variables X1, · · · , Xp, Y are totally random, then the
expected number of interventions to make causal effect iden-
tification is 19

8 −
39

8p+8 + 6
p+1 (

1
2 )

p < 3.
Proposition 5. For a complete skeleton with p + 1 ≥ 4
variables X1, · · · , Xp, Y , if all the causal relations and
positions of variables X1, · · · , Xp, Y are totally random,
then the expected number of interventions to make causal
effect identification is less than 5

6 (p+ 1)− 11p−10
6p+6 + ln p

2 .

Proof sketch: In a complete graph, there is an exact causal
order for p + 1 variables, in which Y is located in each
position with the same possibility. We assume the order is
X1, X2, · · · , Xi, Y,Xi+1, · · · , Xp. Each variable Xj after
Y costs one intervention to identify its edge with Y . For the
subgraph induced by Y and all its ancestors X1, · · · , Xi, Y ,
the expected number of experiments F (i) is F (i) = 2

3p +
1
6 + 2

3

∑p
i=3

1
i , i ≥ 3. Hence the expected number C(p) to

make causal effect identification is C(p) = 1
p+1

∑p
i=0(p−

i+ F (i)), which concludes the upper bound. �

In Appendix D.3, we show more analyses. In a complete
graph where Y is not ancestor of any other variables, ances-
tor causal structure is the causal graph. By Eberhardt (2007),
the expected number of interventions to make causal effect
identification is 2

3 (p+1)− 1
3 by taking singleton hard inter-

ventions and identifying the causal relations by just whether
the distribution of other variable changes when whole vari-
ables are observable, while it is 2

3 (p+ 1)− 2
3 + ln p

2 by our
approach observing only Y . Both their ratios to the variable
number are 2

3 when p→∞. Hence our approach achieves
the same efficiency by exploiting how the distribution of
Y changes. In a general complete causal graph, the ratio
by our approach converges to 5

6 , while it is 1
3 for the full

observations setting. The gap is because when we intervene
on a variable not belonging to AncY , the distribution of Y
remains. The information revealed by such intervention is
very limited compared with fully observable scenario.
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6. Experiments
In this section, we apply our approach on both synthetic
datasets and real-world data. The code is developed based
on R package “pcalg” (Kalisch et al., 2012).

6.1. Simulations

In this part, our approach is compared to two active
intervention strategies “Entropy4” proposed by He &
Geng (2008) and “OPTSINGLE” proposed by Hauser &
Bühlmann (2014), as well as RESIT (Peters et al., 2014)
and LiNGAM (Shimizu et al., 2006)-two causal discovery
approaches based on observational data. Two degenerated
versions of ACI are also compared. The only difference
between them and ACI is in the part of intervention variable
selection. In the chain component with directed paths to Y ,

(1) Legal-random: determines a set as Fig. 2 and randomly
selects the intervention variable in it;

(2) Max-siblings: selects the variable with maximum sib-
lings as the intervention variable.

Although only the interventional data of Y is observed in
our setting, in order to reflect the efficiency rather than mere
effectiveness of our method, we allow some setting relax-
ations in the compared methods. We list the detailed input
information of all the compared approaches in Table 1.

Table 1. The input information of all approaches.
Approach Interventional data

RESIT None of interventional data
LiNGAM None of interventional data

ACI only Y observed
Max-siblings only Y observed
Legal-random only Y observed

Entropy adapted to only Y observed
OPTSINGLE adapted to only Y observed
Entropy-full full variables observed
OPTSINGLE-full full variables observed

Because ancestor causal structure discovery is sufficient and
necessary for causal effect identification, we evaluate on
the number of newly identified ancestor edges, which have
not been identified in the essential graph. More identified
ancestor edges usually imply more identified causal effects.

At first, we give an example to illustrate the process of
identifying ancestor causal structure by various methods in
Fig. 3. The non-linear data generating process is shown in

4Two strategies are proposed by them and achieve similar re-
sults. We thus only show that of the strategy “maximum entropy”.

Appendix E. When we intervene, the intervention value is
set to the mean value of the intervention variable in obser-
vational data. The red node is the response variable. And
the ancestor causal structure is the part with solid lines in
Fig. 3(f), where the solid lines denote ancestor edges. The
essential graph Ess and the chain components are shown
in Fig. 3(a). There are two chain components in total. The
experiments are conducted based on Ess. By RESIT and
LiNGAM, undirected edges in Ess are inferred. Fig. 3(b)
and Fig. 3(c) show the results. The blue and red edges are the
correctly and wrongly identified edges, respectively. They
are both classical methods. But in such complex setting, we
can see it is hard to discover the causal graph based on only
observational data by these approaches. Fig. 3(d) depicts
the experiment processes by Entropy-full and OPTSINGLE-
full. When they focus on chain component 1, the variable
selected at first by both of them is labeled by number 1.
By utilizing the post-interventional data of full variables,
the blue edges are identified. So is the second intervention.
Fig. 3(e) is by our approach. The ancestor causal structure
is identified by only once intervention and only the data of
response variable. Although Entropy-full and OPTSINGLE-
full have the information of full variables, they still possibly
need more interventions to achieve the same goal with ours.

Then, we conduct a simulation to evaluate the effectiveness
and efficiency of our method. We generate 100 linear struc-
tural equation models with the number of variables p = 30
and noise ε ∼ N (0,1p). The variable with the maximum
degree is set to be the response variable. For each model,
we generate 2500 samples as observational data. Our exper-
iments begin from the essential graph. In each intervention,
we have 1000 samples with the intervention value set to 2.

We evaluate the number of newly identified ancestor edges
under different intervention time restrictions. For compared
methods, if some unidentified edges remain after using up
the intervention times, we orient them randomly. The results
are in Fig. 4. RESIT and LiNGAM are exceeded by other
approaches. The reason is the linear-Gaussian setting is not
suitable for them, which indicates in general, intervention is
necessary for our mission. Also, the comparison results with
Entropy and OPTSINGLE imply the efficiency of our ap-
proach and considering how the distribution of the response
variable changes is important given only response variable is
observable. Besides, the superiority to the two degenerated
approaches implies the effectiveness of our active strategy.

6.2. Application to Real Data

In this part, we apply our approach on a dataset used in
causal discovery with both observational and interventional
data (Sachs et al., 2005). It consists of 7466 measurements
of the abundance of phosphoproteins and phospholipids
recorded under different experimental conditions in primary
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1

2

(a) Essential graph (b) RESIT (c) LiNGAM

2

1

(d) Entropy-full &
OPTSINGLE-full

1

(e) ACI (f) Causal graph

Figure 3. (a) depicts the two chain components in essential graph. (b)-(e) imply the identified causal relations by different approaches,
where blue edges or yellow edges denote the edges correctly identified in different stages, while red edges denote the edges wrongly
identified. The last figure shows the ground-truth causal graph, where the solid lines denote the ancestor edges.
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Figure 4. The number of newly identified ancestor edges.

human immune system cells. After processing, 5846 mea-
surements remain. Refer to Appendix E for more informa-
tion about the dataset and the causal graph.

Table 2. The regression coefficients.
Variable Raf Mek PLCG PIP2 PIP3
Coefficient -0.024 0.052 0.008 0.023 -0.012

Akt PKA PKC p38 JNK
1.016 0.077 0.003 -0.023 -0.004

Table 3. The number of newly identified ancestor edges.
Approach GIES IGSP Entropy-full OPTSINGLE-full ACI
#ancestor edges 1 2 2 2 3

We set “Erk”, which is the variable at the end of causal order,
as the response variable. First, we run a linear regression
between “Erk” and other variables. The coefficient of each
regressor is shown in Table 2. The coefficient of “Akt” is
far beyond others in the predictive model. But in the causal
graph, we know “Akt” has no causal effect to “Erk”, while
“Mek” has a significant influence to “Erk”, which can be
identified by our approach based on causality. It indicates
the necessity of considering causality in decision-making.

Next, our approach is compared to Entropy-full (He & Geng,
2008), GIES (Hauser & Bühlmann, 2012), OPTSINGLE-
full (Hauser & Bühlmann, 2014) and IGSP (Wang et al.,
2017). Both GIES and IGSP are towards causal discovery
based on observational and interventional data. And we
evaluate the number of newly identified ancestor edges. For
fairness, GES algorithm is used in all cases to get an esti-
mated essential graph. To simulate the active process, we
then select the intervened variable according to our strategy
and take corresponding interventional data of Y in. If the
required interventional data is not in the dataset, we refer to
the ground truth edges of the intervened variable to orient
the PDAG. These “copying” edges will be also oriented to
the results of other approaches and not be counted into our
evaluation. For the compared approaches, we allow them to
have the data of full variables under the intervention our ap-
proach takes. The results are shown in Table 3. It indicates
ACI can find causal relations more efficiently in real tasks.

7. Conclusion
In this paper, we propose a method for causal effect iden-
tification when only response variable is observable under
intervention. Our approach begins from a Markov equiva-
lence class. We design a strategy to intervene and infer the
causal relations by the post-interventional data of response
variable until identifying the causal effect of each variable
on the response variable. We verify the effectiveness and
efficiency of our method theoretically and empirically.
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